二次函数概念
来源:易贤网 阅读:680 次 日期:2015-09-10 14:20:32
温馨提示:易贤网小编为您整理了“二次函数概念”,方便广大网友查阅!

一般地,把形如y=ax²+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。对称轴为直线,顶点坐标,交点式为(仅限于与x轴有交点和的抛物线),与x轴的交点坐标是和。

注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。

二次函数公式大全

二次函数

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax²+bx+c(a,b,c为常数,a≠0)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax²;+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)²;+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b²;)/4a x1,x2=(-b±√b²;-4ac)/2a

III.二次函数的图象

在平面直角坐标系中作出二次函数y=x??的图象,

可以看出,二次函数的图象是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P [ -b/2a ,(4ac-b²;)/4a ]。

当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b²-4ac>0时,抛物线与x轴有2个交点。

Δ= b²-4ac=0时,抛物线与x轴有1个交点。

Δ= b²-4ac<0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax²;+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax²;+bx+c=0

此时,函数图象与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

更多信息请查看文秘知识

更多信息请查看文秘知识
易贤网手机网站地址:二次函数概念
由于各方面情况的不断调整与变化,易贤网提供的所有考试信息和咨询回复仅供参考,敬请考生以权威部门公布的正式信息和咨询为准!
关于我们 | 联系我们 | 人才招聘 | 网站声明 | 网站帮助 | 非正式的简要咨询 | 简要咨询须知 | 加入群交流 | 手机站点 | 投诉建议
工业和信息化部备案号:滇ICP备2023014141号-1 云南省教育厅备案号:云教ICP备0901021 滇公网安备53010202001879号 人力资源服务许可证:(云)人服证字(2023)第0102001523号
云南网警备案专用图标
联系电话:0871-65317125(9:00—18:00) 获取招聘考试信息及咨询关注公众号:hfpxwx
咨询QQ:526150442(9:00—18:00)版权所有:易贤网
云南网警报警专用图标